Description
Version:
v18.2
Audience:
Data scientists Business analysts Clients who want to learn about machine learning models
Objectives:
Unsupervised models: K-Means and Kohonen
? K-Means basics
? Include categorical inputs in K-Means
? Treatment of missing values in K-Means
? Kohonen networks basics
? Treatment of missing values in Kohonen
Unsupervised models: TwoStep and Anomaly detection
? TwoStep basics
? TwoStep assumptions
? Find the best segmentation model automatically
? Anomaly detection basics
? Treatment of missing values
Association models: Apriori
? Apriori basics
? Evaluation measures
? Treatment of missing values Preparing data for modeling
? Examine the quality of the data
? Select important predictors
? Balance the data
Detail:
alues in Kohonen
Unsupervised models: TwoStep and Anomaly detection
? TwoStep basics
? TwoStep assumptions
? Find the best segmentation model automatically
? Anomaly detection basics
? Treatment of missing values
Association models: Apriori
? Apriori basics
? Evaluation measures
? Treatment of missing values
Association models: Sequence detection
? Sequence detection basics
? Treatment of missing values
Preparing data for modeling
? Examine the quality of the data
? Select important predictors
? Balance the data
Pre-Requisites:
Knowledge of your business requirements
Additional information
Application | IBM SPSS |
---|---|
Duration | 2 Days |
Language | English |